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ABSTRACT 

In this work we present a different proof of results by K.B. Krohn and J. L. 
Rhodes [1 ], and give a new result on the same lines. These authors proved that 
every function computed by a finite state machine can be constructed by 
"elementary operations" on a set of"pr ime functions." By extending the scope 
of elementary operations, we now show that all functions computed by finite 
machines are built from a single function, 

0. Introduction and summary of results. We study the family of functions 
defined on the set of all tapes (over a finite alphabet) which are computed by 
finite machines. 

We define three elementary operations on functions. 
(i) T a k i n g  divisors  - -  F divides G if F = f • G • g where g is homomorphism 

(code) of the domain of F into the domain of G (both domains are free semi- 
groups) and f is a function from the range of G into that of F. 

(ii) Direc t  p r o d u c t - - F a  x F 2 operates on the set of tapes over Z 1 x Z2 
where Zi is the alphabet of F i and 

(0.1) (F 1 x F2) ((a 1, ba), (a2, b2), " ' ,  (a,, b,)) 

= ( F l ( a l ,  . . . , a , ) ,  F 2 ( b l ,  "", b,)). 

(iii) C o m p o s i t i o n  - -  F 1 • h • F~  - -  where: 

(0.2) V~(al,..., a , )  = F2(a  1), F2(a  1, a2), . . . ,  F2(a  1, ." ", a , )  

and h is a code from the range of F~' into the domain of F1. 
The main result of Krohn and Rhodes states that the set of functions computed 

by finite machines can be generated by elementary operations from the set: 

(0.3) ( f~  I G is a simple group} U ( F v }  
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where for a finite semigroup S we define Fs as a function over S-(as alphabet) by 

(0.4) F~(sl, "", s,) = sl "- s, s t ~ S. 

The semigroup U is {a, b,1} where: 

(0.5) x . l = I ' x = x  y ~ l , x ' y = y  x, y e U .  

If  we allow a fourth elementary operation, that of tape reversing: 

(0.6) F+ (al, ..., a,) = F(a,, ..., al) 

we can prove that every function of a finite machine can be obtained from one 

distinguished function B whose alphabet is {0,1} and: 

(0.7) B(xl, "", x,) = 1 ~ there is i < n such that xi = 1 

B ( x t , ' " , x , )  = 0 otherwise. 

The proof given here for the first result differs from Krohn-Rhodes'  in the 

extensive use we make of algebraic results by D. Rees I6] on the structure of  

semigroups. 

Plan of the paper. §§ 1-2 contain basic definitions and results of Rabin-Scott, 

Myhill, Krohn-Rhodes and D. Rees. These are stated here for the sake of  comple- 
teness. §3 contains our proof  of the main results of Krohn and Rhodes. §4 gives 
two applications for the main theorem. §§5-7 contain proof  of  our result about 
constructibility with four elementary operations (including tape reversing). 

1. Basic definitions and elementary results. 

DEFINITION 1.1. Let • be a finite set. A tape over X; is a finite sequence of 
elements (symbols) of E. E* is the set of all tapes over Y~ (not including the empty 

sequence qS). a~a2...a, is the tape a~,a2, ...,a,. If  x, y e Z *  xy - -  denotes the con- 
catenation of x and y. 

Ig* is a semigroup under the operation of  concatenation. 

DEFINITION 1.2. A sequential machine is an ordered 6-tuple (X, S, M, B,f, So) 
where: 

X is a finite s e t - - t he  input alphabet of  the machine. 

S is a countable set - -  the states set of  the machine. 

f is a function f :  S ~ B - -  the output function. 

So ~ $ - -  the initial state of  the machine. 

A sequential machine is finite if S and B are finite. 
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We shall extend M to function from S x E* into S. M is already defined on 
S x Y~ i.e. for tapes of length 1 in the second argument. It is extended by induction 
on the length of  tapes in ~*: 

(1.1) M(s, ax) = M(M(s ,  a), x) a E Z,, x E Y~*. 

DEFINITION 1.3. The function of the machine ~ = ( E , S , M , B , f ,  So ) i s  the 
function: 

(1.2) F~: Y.* ~ B F~(x) = f (M(so,  x)). 

A function F:E* ~ B  is said to be computable by a finite machine if F = F~ for 
some finite machine ~. 

Let F be a function F: 2* -~ B (E is finite, B is countable). By, "the equivalence 
relation of F "  we shall mean the relation on 2* defined by: 

(1.3) 
F 

x - y ~ F ( t x s )  = F(tys) for all t, s e E* u {~}. 

F 
The relation = is clearly an equivalence and even a congruence relation over Y~* 
(with respect to concatenation). Naturally the classess form a semigroup. This 
semigroup Se is called the semigroup of F. Its elements are [x]r. (The equiv- 
alence classes of the tapes mod F). 

THEOREM 1.1. F is computed by a f inite machine iff  Sr  is a f inite semigroup. 

The proof is almost a restatement of a theorem by Myhill (cf. Theorem 1 in 
Rabin-Scott [5]). 

We thus associate with every finite machine, a finite semigroup St ,  which we 
also denote by S~. Conversely with each finite semigroup we associate a finite 
machine ~s = ( [ S [ , [ S [ u  { I} ,M,  IS[ , f , I  ) where IS[ is the set of elements of 
S. 1 is an element not in [ S I, M(I,  s) = s, M(s, t) = s" t (the dot stands for the 
multiplication of S). Finally f ( s )  = s, the identity function. 

A simple computation will verify that F~s(s~...sn)= sl ,"  . . . .  s, and S~s = S. 
We also use the notation Fs for F~s - -  the function of the semigroup S. 

From now on unless otherwise stated "a  function" means a function of a 
finite machine. If F: Y.* ~ B, then Y. is the input alphabet of F and B is its output 
set. Also a "semigroup" always means a finite one. 

DEFINITION 1.4. The function G divides a function F (G/F) if there is homo- 
morphism h of ~* (g is the alphabet of 6;) into F* (F is the alphabet of F) and a 
function f from the output set of F into the output set of G such that G = f .  F • h 
( .  stands for composition of functions.) The relation F/FsF obviously holds 
with h(x) = [x]~. 
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DEFINITION 1.5. The direct product F x G of F and G is defined on (Z x F)*--  
(Z, F are the input alphabets of F and G respectively) into the direct product of 
their output sets by: 

(1.4) (F x G) (a t, b 1), (a 2, b2), "", (a,, bn) 

= (F(al'"an), G(al'"an)). 

Let F be a function F:Z* -o B. F ^ will denote the function: F ^ :Z* ~ B*. 

(1.5) F ^ (a l"" an) = F(a 1), F(a 1 a z),"" F(a l"" an). 

DEFINITION 1.6. A composition of F and G is a function of the form F" h • G ̂  
where h is a code (homomorphism) of C* into Z* (C the output set of G, Z the 
alphabet of F). 

DEFINITION 1.7. The operations of taking divisors, direct product, and com- 
position of functions are elementary operations. 

DEFINITION 1.8. The semigroup S divides G (S/G)if S is homomorphicimage 
of a subsemigroup of G. 

DEFINITION 1.9. Let S and G be semigroups. The wreath product of S and G 
is the semigroup GWS whose elements are the pairs (F, s) with F a function from S 
into G, and s e S. 

The multiplication is defined by: 

(1.6) (F, s) .  (R, t) = (K, s .  t) where K(x) = F(x). g(x. s) 

for xeS .  

The dots stand for multiplication in S, G or GWS according to case. 

DEFINITION 1.10. The operations of taking divisors and wreath product of 
semigroups will be called elementary operations on semigroups. 

The direct product of semigroups is contained as a subsemigroup in their wreath 
product as one easily verifies. 

2. Correspondence of functions and semigroups. 

DEFINITION 2.1. Let U be the semigroup {a,b,I} with 

(2.1) x . I = x  x ' y = y f o r  y # I ,  x , y ~ U  

In [1] Krohn and Rhodes proved that a function F is constructible by elementary 
operations from a set of functions ~ ' and  Fv if and only if Sv is constructible by 
elementary operations from U and the set of semigroups corresponding to the 
members of ~.  
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NOW we state some lemmas asserting that certain semigroups and functions 
can be constructed from other semigroups and functions. 

DEFINITION 2.2. RA: A* --* A, La: A* --* A, Da: A* --* A k) {I} 
(for ! ~ A) are the functions: 

Ra(al , . . . ,a , , )  = a, 

(2.2) L , t ( a l , " ' , a , )  = a~ 

Da(a l , . . . , a , )  = a,_~, 1 < n Da(al) = I .  

For A = {a, b} these functions will be denoted by R, L, D respectively. 

A R is the semigroup of Ra. (Its elements are the elements of A and aa = ba = a, 

bb = ab = b). 
A L is the semigroup of La. 

LEMMA 2.1. R a, L a, D a are obtained from F v by elementary operations. 

The construction of Da uses a code which is not length preserving and this is the 
only place where we use such codes. We cannot avoid it completely because any 
function F obtained from Fv by elementary operations using length preserving 
code satisfies: F ( y x x ) =  F(yx) for each x, y in the alphabet of F whereas 
D(yxx) = x ~ D(yx). 

D~ ), the kth delay function on A, is the following function DEFINITION 2.3. 
on A*: 

(2.3) D~ ) ( a l " ' a , )  = a,-k i f n > k  

= n n < k  

LEMMA 2.3. D~ ) is obtained from D by elementary operations. 

Note that D~ °) = Ra, D~ a) = Da. Again ifA = {a, b} we omit the subscript A. 

DEFINITION 2.4. Let S be a semigroup. S O denote S with an external 0 adjoined 
and $ denotes S with an external unit adjoined - -  (this unit is denoted by Is). 

LI3MMA 2.3. I f  S is obtained from a set of groups and U, then the same is 

true for  ~ and S o using the same set of groups. 

DEFINmON 2.5. Let F: Y,*~B then cF: {Y,U{e})*-~BU{c} (c~Y,) is the 
function: 

(2.4) cF(xcy) = F(y) for y e E*, x e (~ U {c})* and 

c F ( x e )  = e 

(cF computes the value of F for the tail after the last occurrence of c). 
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LEMMA 2.4. 
and F U, then the same is true for  cF. 

Now we state some algebraic results used later: 

THEOREM 2.5. ([6]): In a f inite semigroup 

contain idempotents. 
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I f  F is obtained f rom [ ~ ' ~ [ G ~ }  where f9 is a set of  groups 

the powers of each element 

DEFINITION 2.6. An ideal T = S is proper if T ~ S and T contains more than 

one element. 

DEFINITION 2.7. Let T be an ideal in S. S -  T will be the semigroup 

(I S I - [ T [) k3 {0} where the product a .  b is changed to 0 if  previously it was in T 
or if a = 0 or if b = 0 .  

DEFINITION 2.8. A semigroup is simple if  it does not contain a proper ideal 
and it is not the semigroup {a,0} where a • 0 = 0 . 0  = a • a = 0 .  a = 0. ({a, 0} is 
called " the nilpotent semigroup.") 

THEOREM 2.6. Let S be finite. Then there exist a sequence of  semigroups 

S = S O ~ S 1 ... ~ S,  where St+ 1 is an ideal o f S  t while St - St+I and S n do not 

contain a proper ideal. (Such a sequence is called a composition series for  S.) 

In fact one may further prove that the factors St+ 1 - St and S, are unique in 
the sense that the same factors appear (possibly permutated) in any composition 

series (see [6]). 

THEOREM 2.7. S is simple i f f  S = S x S for  every x ~ O, x ~ S. (See [6]). 

COROLLARY 2.8. Let S be finite and simple, then for  every x e S  there 

are idempotents l and f such that Ix f  = x. 

Proof. By Theorem 2.7 there are t and r in S such that txr  = x but then 
F x r  p = x for any p > 0. The powers of  each element contain idempotents 
(Theorem 4.1) and one can choose a common p such that t p, r p are idempotents. 

THEOREM 2.9. A finite simple semigroup with zero is of the form L x G o x R -  T 

where G is a group, and the product in L x G o x R is defined by: 

(2.5) (l, g, r) (t, h, s) = (l, gP,,,h, s) where P,,t ~ GO. 

Moreover for  every r e R  there is l e L  such that P , , l ~ O  and for  every l e L  

there is r E R such that P,.I ~ O. T is the ideal of  aU elements of  the form (l, O,r). 

For a proof  see D. Rees [6] noting that by Corollary 2.8 every finite simple 
semigroup is completely simple in the sense of  [6]. 

COROLLARY 2.10. I n a  finite simple semigroup i f  x 1 ... x ,  = 0 then there 

is l < i <- n such that xi " xl+ l = O. 
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The assertion follows from Theorem 2.9. Indeed xa.. .  x. is zero if  one of the x~ 
is zero or there are x~ and x~+ x of the form (m, g, n), (k, h, t) such that P,,k = O. 

COROLLARY 2.11. I f  X " l = X and x • y = 0 (in a simple semigroup),  then 
x ~ O  implies l . y = O  because if x = ( m , g , n )  y = ( t , h , n )  and x ' y  = 0 then 
P~,t = 0. Now x • l = x implies l = (k , f ,  n) and then l • y = 0. 

DEFINITION 2.9. A finite semigroup is solvable if each of the factors S ~ - S i + l ,  

S~ in its composition series which is not nilpotent semigroup is of the form 
L x G O x R - T where G is a solvable group. 

3. The main construction theorem. In this section we find a minimal basis for 
the class of all functions computed by finite machines. Equivalently (by theorems 
of §2) we may consider semigroups instead of functions and define a basis for 
the finite semigroups. The corresponding functions will serve as functions basis. 

DEFINITION 3.1. A prime semigroup is a finite simple group or U. A function 
is prime if it is of the form Fs where S is prime. 

We can use the theorems of §2 freely because our basis contains Fv. If D was 
also included we could confine ourselves to the more restricted kind of elementary 
operations defined by length preserving codes. 

TrmOREM 3.1. A semigroup without proper ideals is constructible f rom  U 

and the pr ime groups dividing S. 

Proof. (a) The nilpotent semigroup is constructible because its function is 
obtained from R and D by first coding h ( x ) = ( x , x )  xe{0,a},  then operating 
with R{o,a } x D{o,o } and finally decoding by f ( ( x ,  y)) = 0 y ~ I,  f ( ( x , I ) )  = x. The  
result is always zero unless the tape has length 1, in which case the tape is re- 
produced. 

(b) Let S be a simple semigroup. We can assume that S contains a zero element, 
otherwise we deal with S o which is also simple and get S as a subsemigroup of S °. 
The semigroup S is of the form L x G o x R - T (of. Theorem 2.9). It suffices to 
construct S '  = L x G o x R because S is a homomorphic image of it. Now: 

(3.1) S' c_ L x (G ° W/~) 

L, R are semigroups of the form A L, A R respectively. 
To prove this formula we define a homomorphism f of S' into L x (G ° WR) 

(3.2) f((l ,  g, r)) = (1, Fg,1, r) where Fg,~(IR) = g 

Fg,s(x) = P~,l "g  

f is clearly one-to-one. Now: 
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(3.3) 

where: 

(3.4) 

and since x • r '  = r '  

(3.5) 

FINITE SEQUENTIAL MACHINES 

f ( ( l ' ,  y ' ,  r ' ) )"  f ( ( l ,  y, r)) 

= (l', F, ,3 , ,  r ' ) .  (1, Fo, z, r) = (l', F, r) 

F(x)  = F o,l,(x) " Fo,,(x " r') 

F(x)  = Pxrg 'P, , tg  = Fo,r, ,,~(x ) 
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which proves that f is a homomorphism.  

Since L and R are constructible f rom U we have only to show that  every group 
is constructible f rom its normal  divisors. For  this it suffices to show that  
G c_ N W ( G / N ) .  For  the p roo f  o f  this fact see [1]. 

THEOREM 3.2. I f  S is a f ini te semigroup then F s is obtained f rom the pr ime 
funct ions dividing it and F v. 

Proof.  By induct ion on the number  o f  elements in S. I f  S is simple we use 
Theorem 3.1. Otherwise let J be a maximal  proper  ideal in S. Then S - J contains 
no proper  ideals. We distinguish two cases: 

(1) S -  J is the ni lpotent  semigroup. This means that  S is of  the form S = {a} u J 
with a 2 ~ J and Ja u aJ c j .  

We code a given tape by h ( x ) =  (x, c) for  x e J and h ( a ) =  (c, a). Then we 
operate with (cRIJ I x cD (k)) ̂  where k is the least number  such that  there is an 
n > k satisfying a ~ = a k (see Theorem 2.5). 

There results a tape in which the symbol (x, c) occurs if the original symbol 
was x ~ J ;  (c, i) or  (c, a) occurs if  the original symbol was the ith 'a '  in a run o f  
'a ' s  ((c, i) if  1 -< i < k and (c, a) if  i > k.) 

I f  we now have a tape tot~...t k we t ransform it into 

(3.6) (to, I)  ( t l ,  to)"" (t~, tk- 1)"" 

by using a code t ~ (t, t) and a funct ion (R x D) ̂ . Now we use the code:  

(3.7) ((c, 1), I)  ~ (I~, 1) 

((c, i), (e,j) ~ (I t ,  i) 

((x, c), (c, i)) ~ (a t • x, c) 1 < i < k x e J (note aix e J). 

((x, e)), (c, a)) ~ (x, c) 

((c, a), t ) ~  (a "+ 1, c) t any symbol and r is a number  such that  for  
every n > k a n • a r = an. 
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(Such a number exists by Theorem 2.5 and [-6]. 
a '  is the unit of the cyclic group.) 

t any symbol. 

The idea here is to count length of 'a '  runs. If it is less than k we multiply the 
element (of J) following the run by the power of  'a' .  If  the run is longer than k 
we replace the ith a (i < k) by (Is, i) and the kth 'a '  by (a k, c). For 'a 's beyond 
the 'k ' th the product will not change if we replace 'a '  by a "+1 since an+" = a n 
for n > k. The second coordinate takes care of the case when the original tape 
concludes with an 'a '  run. 

Now we use F 7 × Rtc, l,~,....k_ ~ and get (x, c) if the value of Fs on the original 
tape is x or (x, i) if that value is x • aL 

(2) S - J is a simple semigroup. S consists of elements of J and of I s l -  IJI. 
First we shall get rid of the case where a run of elements of lsl - I JI  in the tape 
multiplies to an element of J. 

By Corollary 2.10 we can get an element of J only by multiplying two neighboring 
elements of Is l -  IJI. By using the same kind of code and function as in the 
proof of  the first case we pass from the tape xl.. .x, to (Xo,1), (XlXo)...(xs, x,-~) 
(cf. Formula 3.6). Whenever we get a pair (x,y) where x, yE I s l - I J  I and 
y . x e J  (that is y ' x  = 0 in S - J ) ,  we know by Corollary 2.8 that there is an I, 
element in Is l -  IJI such that y .  l =  y, hence by Corollary 2.11 l .  x =  0 (the 
product is in S-J ) .  Hence l • x E J. Thus we replace those pairs by ( l 'x ,  c) and 
other pairs (x, y) by (x, c) if x e J or by (c, x) if x e S - J. 

Having done this, a run of elements of S - J does not drop down to J. We 
compute the product by (cRr x cFs_~) ̂ . We again use an appropriate coding 
and function to couple each element with its predecessor (or I) and code 
((x, c)), (c, y)) ~ (y" x, c) (if x e d then y"  x ~ J) ((c, y), t) ~ (1I, Y) t any symbol 
((x, c), (y, c)) -~ (x, c), ((x, c), I) -~ (x, c). This has the effect of adjoining the product 
of elements of S - J to the succeeding element of J. We operate with Fy x cRs_ ~ 
and get either (x, c) if the value of Fs on the original tape is x and (x, y) if the 
value of Fs on the original tape is x • y. (We set I j  • y = y when y ~ S - J.) 
The y appears whenever a certain tail of the original tape consists of elements of 
S - J. So finally we proved that we get Fs from Fs-j, Fj and U, which by the 
induction hypothesis proves the theorem. Q.E.D. 

4. Remarks and applications of the main theorem. One also has a kind of 
uniqueness for the construction which follows from: 

T~OP, rM 4.1. Let G be a prime semigroup. If  G/SWT then G/S or G/T. 

This Theorem is proved by Krohn-Rhodes ([1]). 
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P~UARK. Krohn and Rhodes in [2] introduced the notion of "complexity" of 
the semigroup S, 4~(S), defined as the minimal numbers of "blocks" of groups 
appearing in any construction of S from prime semigroups by elementary opera- 
tions. 

In [3] they proved a result about "continuity" of ~ ( S ) -  ~ (I) < 4~ (S) ~ 4~ (I) + 1 
where I is a maximal proper ideal in S. This result follows immediately from our 
way of proving the main theorem. 

The simplest kind of a finite machine is a counter. A counter is a machine with 
alphabet {1} and output {0,..., k - 1} for some k > 0. The machine computes 
the length of the tape msololo k. In [1] it is actually proved that: 

THEOREM 4.2. A function F is constructible by elementary operations f rom 
counters and F v iff S l is a solvable semigroup. 

DEFINITION 4.1. A function is k definite if it depends only on the last k symbols 
of the tape. (F(xy) = F(y) whenever the length of y is greater than k). A function 
is definite if it is k definite for some k > 0. 

THEOREM 4.3. F is definite iff it is obtained by elementary operations from 
R and D. 

5. The operation of tape reversing. We add to our elementary operations on 
functions a new operation - -  tape reversing. 

(5.1) F+(al...an) = F(a,. . .al) F + is the reverse ofF .  

The corresponding operation on semigroups, the reversing of a semigroup is the 
anti-isomorphic image of the semigroup. We denote the reverse of S by S ÷. It will 
be convenient to use, instead of wreath product, another algebraic operation. 

DEFINITION 7.1. Let S and T be semigroups, X--an  antihomomorphism of S 
into the endomorphisms semigroup of T, Y - - a  homomorphism of S into the 
endomorphisms semigroup of T and assume that every endomorphism Y~ permutes 
with every endomorphism Xt,. Then the semidirect product of # S and # T 
directed by X and Y is I T[ x I s l  with multiplication: 

(5.2) s)(v,  t) = ( x , ( # ) .  s .  O. 

We use the notation (S, Y, T, X)  for this product. The conditions imposed on X 
and Y ensure that the multiplication is associative. We shall show that taking the 
wreath product instead of the semi-direct product as an elementary operation 
does not change the closure of a set of semigroups with respect to the enlarged 
set of elementary operations. I.e. the class of constructible semigroups is the 
same in both cases. 
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THEOREM 5.1. ( S , Y , T , X )  is obtained by elementary operations from S 
and T. 

Proof. We extend X and Y to 2~ by X t ~ )  =/~ and Yx~(P) =/~ for all # e T. 
To show (S, Y, T , X ) _  ((SzWSl) + W(~-0+) + we define an isomorphism f from 
left to the right by 

(5.3) y((p,s)) = (F~,,,s) where Fg,s(x)= (G~,x,s) where 

G~,x(z) = g~rz(~)  x, z ~ $ 

f is one-to-one because F~,s(I)=(G,,~,s) and G~,I~(Is)=X~(Yt~))=# so 
f((/~" s))=f((~/, t)) implies (p, s ) =  (~/, 0. That f is a homomorphism can be 
verified by direct computation using the permutability of X and Y. 

The direct product is a particular case of  semidirect product by choosing 
Xs(#) = Y,(#) = # for all s ~ S, p e T. 

TrmOR~M 5.2. The wreath product is obtained from S and T by semidirect 
products. 

Proof. We present TWS as a semidirect product of  S and T ~ (n is the number 
of elements in S). We take Xs(F) = F, Y~(F) (t) = F(t" s) for all s ~ S, t ~ T. 

Using the method of  proof of our Lemma 2.3 in [1] we can prove (where 
"'elementary operations" are in the new sense): 

THEOREM 5.3. I f  S is constructible by elementary operations from a set of 
semigroups with unit then S is constructible from the same set and U. (Actually 
we use only {a,I} c U). 

6. Finite automata. 

DEFINITION 6.1. A finite automaton is a finite machine whose output alphabet 
is {0,1}. 

Let u be a finite automaton. The set of tapes generated by u is the set 
r~ = { x l x ~ g * ,  F~(x) = 1}. 

THEOREM 6.1. (Kleene Representation Theorem): The class of sets of tapes 
over F.* generated by finite automata coincides with the closure of the class of 
finite sets of tapes under the operations: 

(a) Union of two sets. 
(b) Product of sets, given by X .  Y = {x" y I x ~ X, y e Y}. 
(c) The star operation X* given by [,.J~= I X ~ where X x= X, X ~ = X ~-1 • X. 

For proof see S. C. Kleene I-4]. 
There are finite semigroups which are not semigroups of  finite automaton, for 

instance A R whenever A contains more than two elements, however every finite 
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semigroup divides a direct product of semigroups of finite automata. This follows 
from: 

THEOREM 6.2. Let F be a function of a finite machine. There are finite auto- 
mata ~1,"' ,  or, such that F/F~I x ... x F, . 

7. Construction with tape reversing. In this section we prove that when the 
elementary operations include tape reversing then all functions are constructible 
from a single function B: {0,1}* ~ {0,1} given by: 

(7.1) B(xl, .",xn) = 1 if some x i=  1; B(0, . . . ,0)=0 

The associated semigroup is also denoted by B. B = {a,I} ~_ U. 
By Theorems 5.1 and 5.2 in §5, we can use the semidirect product instead of 

wreath product as elementary operation on semigroups. Thus our elementary 
operations on semigroups are: Taking divisors, semidirect product, and anti- 
isomorphism. In order to use the results of §2 we must prove: 

THEOREM 7.1. F v is constructible from B by elementary operations on 
functions. 

Proof. Fv is the reverse of L :{a, b,I} -,, {a, b,I} where 

(7.2) L(xl . . 'x~ = The first x, different from I 

if there is such x~ and I otherwise. 

• o o o o s t r u o t ,  we inpu, t, o  ya.t ,l,.Ilol,. Ol 
and use (BxB) ^. 

\ 1 1 \ v /  \v] 

Next we code 

0 1 1 1 

and operate with B x B. By calculation it is verified that the result is L, by 
approprite decoding. 

Now to prove that every finite semigroup is obtained from B by elementary 
operations, it suffices by Theorem 6.2 to consider the semigroups of finite automata. 

DEFINITION 7.1. Let F be a function. F : Z * ~ C  then DivF:X*-~{0,1} text) 

is defined by: DivF(xl . . .xn)= G where G(a,b) = 1 if the tape x l . . , x  ~ is divisible 
into two tapes such that F(xl-.-x3 = a, F(xt+ l""x,)  = b. 

THEOREM 7.2. I f  F is obtained from B by elementary operations then the 
same is true for divF. 



258 

Proof. 
that: 

(7.4) 

M. MAGIDOR Israel J. Math., 

If  F is obtained from B then Sr  is constructible from B. We prove 

Sdivr/(SF, Y, B Isrl2, X )  for suitable X and Y. 

Indeed let t e I s ,  I 2 and G: [SF[ 2 ~ B. We define X and Y by: 

(7.5) X~(G)(t) = 1 ~. there  is a z = (x,y) e Is l 2 such 

that F(z) = 1 and t = (x, y .  s). 

(7.6) Y~(F)(t) = 1 ~  there is z = ( x , y ) e  [gr[ 2 such 

that F(z) = 1 and t = (s" x, y). 

It is verified directly that X and Y fulfil all conditions of semidirect products. 
We prove (7.4) by defining a homomorphism ~ of Z* into (Sr, y, BlSrl2,X) 
and showing that: 

div F 
(7.7) ~'(t) = ~-(s) implies t ~ s. 

~ ( x l " ' x n )  = (G, [ xc . . x , ] r )  where 

(7.8) G((s, t)) = 1 ,~  s = [xl . . .x~]f and t = IsF 

or s = lsF and t = Ixl '"xn]~ or there is 

1 < i < n such that s = [Xl""Xi]F and 

t = [xi+ l""x,]F. 

It is easily verified that ~- is homomorphism where in concatenation of two tapes 
X, takes care of  any division that cuts through the first tape and Y, takes care of  any 
division that cuts through the second tape. The implication (7.7) is a direct 
consequence of  the definition of # ' .  

We denote (S, y, BlSl2,x), X and Yas before by DivS. 

THEOREM 7.3. Every semigroup of a finite automaton ~ is constructible from 
B by elementary operations. 

Proof. We use Kleene representation theorem (Theorem 6.1) to prove the 

theorem by induction on the sequence of  Kleene's operations which constructs 
K~ from a class of finite sets of  tapes. We can even start with finite automaton/~ 
that generates just one tape of length one. 

The semigroup of  such automata is easily seen to be the nilpotent semigroup 
and by Theorem 3.1 can be constructed from U which in turn, by Theorem 7.1, 
can be obtained from B. Next we examine the three inductive steps: 

(a) K = K1 U K 2 when K, Kf are generated by finite automata when the 
corresponding semigroups are S,S~ respectively. Then S/S1 x 82 because the 
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familiar construction of  the finite automaton that generates K1 u K2 is the direct 
product of the finite automata that generate K1 and K2 (cf. Rabin-Scott [5], 
Theorem 6). 

(b) K = K 1 • K2 with S, St as before, then S/Div(Sl x $2) because a tape 
belongs to K~ • K2 if it can be divided into two tapes which are of equivalence 
classes (x, y), (s, t) with respect to Fs, ×s2 and x is an equivalence class of tapes 
belonging to KI and s is an equivalence class of  tapes that belong to K2. Therefore 

all the division possibilities of a tape with respect to Fsl × s2 determine its behaviour 

with respect to F s and so also with respect to K~ • K2. 
(c) S is the semigroup of K*, G is that of K then S/(DivG, y, BI~I3,X~ for 

suitable X and Y. X and Y are defined by: 

(7.9) Xg(F)(/~)= l¢~l~=(x ,y , z )  g = ( M ,  tr) M:[G[z--*B 

and there is zt such that z = zl" tr and F((x, Yl, zl)) = 1 
or there is ( t , z )e  l d l  2 and (x, yl, z~)~lG[ a such that 
y = y ~ . z l . t ,  z~ • t is an equivalence class of  tapes 

in K, M((t,z)) = 1 and F(x, yl,zx) = 1. 

(7.10) Y , ( F ) ( # ) = l ~ l t = ( x , y , z )  g = ( M , a )  M : I G I 2 ~ B  
and there is x 1 such that x = tr. x 1 and F(x i, Yt, z) = I 
or there is ] and (x l ,y l , z )  ~ IGI 3 such that 
y = t. x.  y and t. x~ is an equivalence class of  tapes in K, 

M(x, t) = 1 and F(x, Yl, z) = 1. 

A tedious computation, however without any essential difficulty, proves that X 
and Y fulfil all conditions for semidirect products. We define a homomorphism 

of  ~* into (Div  G, Y, B laP, X )  such that two tapes that are mapped to the same 
element are equivalent with respect to K*. 

(7.11) ~'(t)=(F,[t]DivV~ ) where F(x ,y , z )= l ~ t h e r e  
is a division of  the tape t into three tapes of the classes 
x, y, z with respect to K and the middle tape belongs 

to K* or it is the empty tape. (We allow the case that 
one or two of  the tapes occurring in the division of t 
are empty, in that case the corresponding coordinate 

in (x, y, z) is IG.) 

to be a homomorphism of ~*. Moreover, the value of~ ' ( t )  determines 
Q.E.D. 

~" is verified 
the behaviour of  t with respect to K* so we get the result. 

Now we prove that B is really elementary because: 

TrmORE~ 7.3. I f  B/(S, Y, T ,X)  then either B/S or B/T. 

Proof. Suppose B/(S, Y, T, X )  then B = f (H),  f homomorphism 

H ~ (S,  Y, T, X )  and H is minimal. Let l be an idempotent such that f ( / )  = 0. 
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(The set of  elements of  H such that f ( x ) =  0 is a subsemigroup of  H.) 

f ( l H l )  = f ( l ) .  f ( H ) .  f ( l )  = 0 .  B .  0 = B therefore by minimality of  n l" n "  l = H 
and l is a unit element of  H. Let a be an idempotent such that f ( a )  = 1 then 

{a, l} is isomorphic to B. 

Let l = (I1,I2) a = ( a l ,  a2). Clearly 12 " a 2 = a 2 " I 2 = a 2  • a2=a2  and I z "12 = I2. 
I f  a 2 # 1 2  then {a2, I2} is isomorphic to B a n d B _ ~  S. I f  a2 = 1 2  we get 

l ' =  YI~(XI2(It)) and a ' =  Yl2(Xt2(at)). Using the fact that {l,a} is isomorphic 
to B we can show a '  # l '  and {a', l'} is isomorphic to B and so B ~ T. Q.E.D. 
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